Restaurant Inspection Data for Ottawa

MYSQL Tutorial #3

This tutorial will deal with creating, loading, and querying a Relational Database.

A Relational database is a database that has relationships between the different tables in it. This allows
creation of webs of tables, for displaying complicated data in an easier-to-understand way.

There are two concepts that are very important for understanding relational Databases. These connects
are Primary Keys and Foreign Keys.

When creating a table in SQL, you can designate a column as a Primary Key. A Primary Key is a unique
column (no value can be repeated in the column) that is used as an identifier for the row. In a single
table, you should be able to find a single row by looking for a single Primary Key value.

A Foreign Key is a column definition that means that the column must reference a Primary Key in a
different table. Each value in the Foreign Key must also be present as a Primary Key value in a different
table.

If you don’t understand this yet, the tutorial should help you figure it out.

1. Firstly, on the open data site for Ottawa, find the Public Health Inspections Dataset. From there,
download the “restaurant” CSV. This is in a zipped format, so you’ll have to unzip it to access the
CSV files.

2. After unzipping, place the 5 files into a folder you can access, as you’ll need the file-path later.

a. Delete the feed_info file. It is unnecessary for this tutorial, and it provides no useful
data.
3. Create a new Schema for the Tutorial (call it tutorial 3, or Ottawa_Restaurants, etc.)
a. This can be done either through the wizard (right clicking on the schema section of
workbench
b. It can also be done as a script, by simply typing “CREATE SCHEMA schema_name;” into
the query tab.
4. Set your newly created Schema as the default schema
a. This can be done either through the workbench tools (right clicking on the schema you
created, and choosing set as default)
b. It can also be done as a script by simple typing “USE Schema_name;” into the query tab.
5. Now you’ll have to create the tables. You will need 1 table for each file, however there are far
less columns in these tables than what we’ve worked with before with the parking-ticket data.
For initial creation, do not concern yourself with Foreign Keys, but be sure to include Primary
Keys
a. To ease creation, the datatypes for each table are as follows

http://data.ottawa.ca/dataset/public-health-inspection-data

— able Name: [business
i«
i

g Collation: | utf3 - default collation

Comments: Note the PK box is checked next to
business_ID. This is crucial, otherwise
Column Name Datatype PK NM UQ BIN UN ZF Al Default A
[business_id [VARCHAR[40) [+ O0Oodad the foreign key references that we
name VARCHAR(100) OO0 0 00 0O wuw . . .
Sidrese VARCHAR(40) OO0 0O 000 o will set up in the next step will break.
city VARCHAR(15) o0 ddOQ wow
state VARCHAR(4) OO0 0 00 0O wuw
postal_code VARCHAR(10) OO0 0O 00O woe
Iatitude VARCHAR(10) oo ddOQ wow
longituds VARCHAR(10) 00O 000 0 wow
phone_number VARCHAR(15) OO0 0O 00O woe
OdOo0ooono
e Table Name: [violations
'c‘
5’. Collaton: |utfd - default collation
Comments:
Column MName Datatype PK NN UQ BIN UN ZF AI Default
[business_id [VARCHAR(3E) | OO o0o0od
date DATETIME OO0 0000 now
code VARCHAR(S) OO0 O0OOd0Od O~ smw
description VARCHAR(200) OO0 0O OO0 O wuw
o000 o0o0n
[— Table Name; [2gend
lo‘
g Collation: |utf8 - default collation
Comments:
Column Name Datatype PK. NN UQ BIN UN FF AI Default
[minimum [iNT{11) |D OO0 O OO0 O nNo
maximum INT({11) OO0 0O 00 0 v
description VARCHAR(20) OO0 0O 00 O wuw
OO0 0Oo0odn
— Table Name: |inspections
lo‘
o Collation; | utfd - default collation
Comments:
Column Name Datatype PK WM UQ BIN UM ZF AI Default
[business_id [VARCHAR(40) O 00 O OO0 O [nue
score INT(11) OO0 O 00O wo
date VARCHAR(8) I I I A I O AT

goooodon

6. We are now going to create a foreign key for violations and inspections. These tables will both
reference the businesses table. This will allow us, once completed, to search all three tables by
business_id, as it is a common column between each one.

a. Refresh your navigator along the left hand side of the screen (right click, and go to
refresh all)

b. All of your tables should show up (if they haven’t already)
Mouse over inspections, and choose the small wrench icon

v | public_health
T';_LTJ Tables
['j business
['j feed_info
» = inspections (4,]
['j legend
['j violations

d. This will bring up the table in a view where you can make changes. Along the bottom of
this page, there will be a series of tabs. Choose the Foreign Keys tab
Click in foreign key name, and write “inspections_FK”

f. Click in referenced table — you will get a dropdown menu, choose the option that
contains business.

g. If business is selected, the business table should appear on the right hand side of the
screen — check the box next to business_id to finalize the reference. It should be very
similar to the picture below when completed.

= Table Mame: |inspech'0ns Schema: public_health
=3 ar Collation: | utfd - default collation ~| Engne: | InnoDE
Comments:
Foreign Key Name Referenced Table Column Referenced Column
inspections_FK *public_health®." business" business_id business_id
score
[date

h. You should be able to complete the violations reference following the exact same steps.
7. Now that the tables have been created, we will make copies of them, for easier creation in the
future.
a. Openanew query tab to save all your creation scripts
b. Right click on each of the tables in your schema, highlight “send to editor”, then click
create statement. Do this for each of your tables. If you look at the scripts it produces,
you will see that primary key and foreign keys are both explicitly stated in the table

creation. Your query tab should look like this.

] o5 Don't L
1 usi (
2] {4a)
3 ar() A
ar{s)
7 ar(18)
8 {12)
9 v (i2) D
18 r {15
11 Y ("B id")
12) noDS utf8
14 ir i (
15 i ar(F
16 £(11) DEFAU
17 rchar(11)
18 t (Y
19 | T " ir ¥ ('t) ()
20 T TrnoUs T ag:
21
2 1
23 ar(36)
24 te u M
25 (!
26 ar (J00)
27 tior x | E 1]
28 i f {) R)
29] nnol8 utts
30
31 leger (
2 int(11) DEFA
int(11)
3 archar(
)] nnoD8 ; tfe

c. Save this file
d. There are more detailed instructions for this step in the previous tutorial.
Ok, we’ve created our tables, we’ve saved a copy of the scripts to create them, now let’s load
them with data.
a. The first step is creating the initial load statement. This is exactly the same as used last
time with the first tutorial.
LOAD DATA LOCAL INFILE “file-path” INTO TABLE “table name”
FIELDS TERMINATED BY “,” ENCLOSED BY “””” LINES TERMINATED BY “\n”
IGNORE 1 LINES;
b. If you're having problems, ensure that the file path is correct, and that you are using
forward slashes (/ - yes) instead of back slashes (\ - no).
c. You will get truncation warnings for the inspections table — however it is a problem with
the initial dataset, and you can ignore them, as it is garbage data that is being deleted.
Ok, now that we have a working dataset, we can manipulate and play with it. Combining two
tables such that you can see both of their data is known as Joining. There are a variety of
different join types, however we will deal with the most common -- the standard or left join.
a. Astandard join is done through several methods, however by far the easiest way is the
“WHERE” command.
b. To begin, we'll have to pick a business to focus on. To do this, query the business table.
(“SELECT * FROM business ;)
c. Forexample, let’s use “MClaren’s on Elgin”.
d. Now let’s see if we can find out when they were inspected
SELECT * FROM inspections;
When you perform this query, you’ll notice that you are only given a business_id, which
doesn’t help us differentiate... We’ll have to join the tables

http://www.davidmckie.com/A%20continuation%20of%20the%20MySQL%20tutorial.pdf

e. So, we'll have to perform a basic join to combine the two tables, and specify that we

only want to see MClaren’s Pub.

SELECT business.name, inspections.score, inspections.date FROM inspections NATURAL
JOIN business WHERE business.name like “MCLAREN%";

So, now we can see that they were inspected 24 times. Let’s break down the above
statement, to make it easier to understand.

i. Asthere are two tables referenced in the FROM section, we need to identify
each column we need to put into the table. So, business.name specifies that we
want the “name” column from the “business” table, and inspections.score
means that we want the “score” column from the “inspections” table.
NATURAL JOIN means that we want the tables to join together naturally. Which
in this case, means that the two key values (business_id, which is a Primary key
in Business and a foreign key in inspections) become a single column, where the
two tables combine.
The % sign at the end of MCLAREN is a wildcard character used in MYSQL. This
means it can match to any characters, or none.

f. So, using this SELECT statement we can see that MClaren’s has been inspected 24 times.

Result Grid

name

MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN

43 Fiter Rows:

score

100
0
0
100

100
100

100
100

100
100
100
100
100
100
100
100
100
100
100
100

| Export:] | Wrap Cell Content: A

date

20140203
20121016
20090717
20150327
20090305
20131105
20120604
20141126
20101207
20090720
20111208
20100601
20090423
20110427
20141128
20150410
20100603
20121018
20111209
20140404
20130206
20140627
20110707
20120322

In those 24, we see it has failed inspections 6 times. From the legend, you determine

that restaurants with a score of less than 100 fail the inspection. If you wanted to
identify only those restaurants, you can add a second criterion to your WHERE clause to
specify that you only want restaurants with failing grades, in this case less than 100 (use
the legend as a guide). So your new WHERE clause would look like this: “WHERE
business.name like 'MCLAREN%' AND inspections.score < 100”. The result looks like this:

|

Result Grid | || 43 Fiter Rows:

name

» MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN
MCLAREN'S ON ELGIN

score date

(= o= I = R = B = R o=

| Export: -] | Wrap Cell Co

20121016
20090717
20090305
20141126
20111208
20100601

10. Let’s see why they failed their inspections
a. We'll now start a query using business and violations.
SELECT business.name, violations.date, violations.code, violations.description FROM
business NATURAL JOIN violations where business.name like “MCLAREN%";

i e
R rnE e it 2010-06-01 00:00:00
MCLAREN'S ON ELGIN 2010-06-01 00:00:00
MCLAREN'S ONELGIN 2009-03-05 00
MCLAREN'S ON ELGIN 2009-07-17 00
MOLAREN'S ONELGIN 2014-11-26 00
MCLAREN'S ON ELGIN 2012-10-16 00:00:00
MCLAREN'S ON ELGIN 2011-12-08 00:00:00

e
FWA
FFA

) EQA

FCD
STA

MDC
MOC

e
Fioors, walks, and celings ciean and in good repair

Food & frozen at -18

Equipment, non-food contact surfaces and inen are mantained, designed, constructed, instaled and accesshie for deaning
Food s held at 4

Sankie test kit / thermometer readiy avalable for verfying dshwashing and santzng tEmperatures

Mechanical dishwashing: Wash | rinse water ciean, water temperature, timing Cycles, santizer

Mechanical dshwashing: Wash / rinse water ciean, water temperature, timing Cyces, santier

b. You can see the violations that occurred for each inspection, as well as the code that

was violated.

c. To get a bit more practice, use the WHERE clause to create other tables, which you can
also save as a csv file (we learned this in step 43 of the previous tutorial), and then
export to the folder you’re using for this tutorial.

http://www.davidmckie.com/A%20continuation%20of%20the%20MySQL%20tutorial.pdf

